

Pioneering Femtosecond Science and Industry

O1 Company and Team

Global competitiveness, in-depth research and development.

- Established in 2021
- Global Femtolaser ecosystem
- Deep in material, life and health market

Products and Core Technologies

- High-power fs laser technology (Helios)
- Tunable OPA (Aurora)
- Pulse compressor-MPC (Hyperion)
- Smart Hardware
- Analyzing Software
- Super stable mechanics

Core Competitiveness

- >15 Years Of Experience In Femtosecond Laser And
 - **Instrument R&D**
- Standardized Mass Production Capabilities
- 18 Standard Product Models, ~70 Combinations

Femtoseconds Connect Materials, Life and Health

Clinical medical equipment

Neuroimaging Instruments

Medical instruments

Global-standard Femtosecond Laser R&D and Production

- Team of 6 PhDs, 8 Masters and 30+ Engineers Across Various Disciplines
- Manufacturing Femtosecond Laser-based Equipment for Material and Life Sciences.

Y-Laser Road Map

- Y-laser Established In September 2021
- Delivery of Multiple Customized Femtosecond Light Sources
- Moved to Xinbi Industrial Park
- 1,500 Square meters of R&D and Production Space
- Expansion to WaveQuanta Singapore supporting international demand

2015

2021

2022

2023-2025

• WaveQuanta Singapore, expanding SEA & Overseas markets

- Wavequanta Established
- Funding for Research And Development
- Accumulate Business Experience

A total of >15 million CNY orders signed

with standard parameters

- Delivery of multiple femtosecond light sources
- - Delivered femtosecond laser systems, securing

· Built collaborations with NUS, NTU, IMRE

>10M SGD orders

Team introduction: World-leading Femtosecond laser manufacturer

Liu Cheng

founder, CEO

- Ph.D., Institute of Physics, Chinese Academy of Sciences
- Laser scientist at the University of Nebraska Super Laser Laboratory and recipient of the National Technological **Invention Award**
- 15 years of experience in femtosecond laser research and development
- Successfully founded Beijing WaveQuanta Technology Co., Ltd. and Shanghai Ytterbium Laser Technology Co., Ltd

Wang Rui founder, CTO

- Ph.D., Institute of Physics, Chinese Academy of Sciences
- 15 Years of experience in femtosecond laser research and development
- Successfully founded Beijing WaveQuanta Technology Co., Ltd. and Shanghai Ytterbium Laser Technology Co., Ltd

Senior R&D and engineer Team

Dr. Wang, Ph.D., Institute of Optical Sciences, Chinese Academy of Sciences, has more than 8 years of experience in nonlinear optical R&D and product development

Dr. Wang, Ph.D., Colorado State University, USA, has more than 10 years of experience in femtosecond solid-state laser R&D and product development

Chen Gong, more than 10 years of experience in FPGA and embedded **Business Development Team**

Ahmad Kathrada, National University of Singapore, Manager of Global Markets, **Singapore**

Ms Gong, bachelor's and master's degree from Tsinghua University

system development

Pulse quality

Ytterbium laser femtosecond solidstate laser pulse waveform 10kHz/2mJ/<200fs/1030nm

Typical femtosecond fiber laser waveform 1MHz/50uJ/270fs/1030nm

HELIOS delivers **shorter pulses**, meaning higher temporal resolution and higher peak intensities for the same pulse energy.

High energy, High power, High Stability

- Wavelength: 1030nm
- Single pulse energy: >2mJ
- Power : >40W

- > Repetition frequency: Single-1MHz
- Pulse width: <200fs</p>
- Power stability: <0.5% RMS</p>

Core Benefits: Tunable femtosecond OPA

Technical solutions

Maximum power

Single pulse energy

Tuning range

Supercontinuum source

10W

100nJ

390-2400nm

Ti:Sapphire

Oscillator

5W

100nJ

690-1040nm

OPO

5W

100nJ

650-5000nm

OPA

20W

>100mJ

200-16000nm

AURORA Series base Yb of the laser OPA system

- > 650-2600nm: tuning range
- Compatible 2mJ/80WPump energy
- High output stability

- CEP Stabilization options
- Mechatronicsdesign

Advanced manufacturing

Core Strengths: Yb laser pulse width is limited 200fs

Technical solutions

Maximum energy

Average power

efficiency

Supercontinuous spectroscopy

10W

10nJ

50%

Solid flakes

5W

1mJ

90%

HCF

5W

20mJ

50%

MPC

1000W

>200mJ

>90%

HYPERION series based on Yb Pulse compression system for lasers

- Up 10 times the compression ratio
- highest 2mJ Pump energy
- High output stability
- Periodic pulse options
- Opto-mechatronics industrial design

Y-Laser Standard Product Series

3.1 Product Introduction

HELIOS Laser series

- High power Yb:KGW
 Femtosecond laser
- Output wavelength: 1030nm
- Single pulse energy: 400μJ/1mJ/2mJ
- Output power: >40W
- Repetition frequency: Single-1MHz
- Pulse width: <200fs</p>
- **♦** Power stability: <0.5%RMS

Typical applications:

Industrial precision machining

Aviation precision machining

Terahertz light

source

High harmonic

drivers

Optical parameters amplify the driver source

Nonlinear optics

Ultrafast X-ray generation

Femtosecond laser direct writing

Eye surgery

Femtosecond pump detection

HELIOS Series Performance

Pulse width & spectrum

Power

stability

Near-field & far-field spots

Pointing to stability

Femtosecond Yb solid-state laser Vs traditional Ti:sa femtosecond solid-state laser

VS

	HELIOS series	ASTRELLA series
Maximum average power	40W	7W
Single pulse energy	2mJ	7mJ
Pulse width	laser: 250fs Match MPC: <40fs	35fs 100fs
wavelength	1030nm	800nm
size	Laser head with control system: 728x420x288mm	Laser head (without control box.)) : 1247x800x262mm
Power stability	<0.5%	<0.5%
Repeat frequency adjustment range	10kHz-1MHz	1kHz
efficiency	10%	<0.1%

3.3 Optical Parametric Amplifier (OPA) Series

AURORA series

- Based on Yb laser OPA system

- ♦ 650-2600nm The tuning range
- Highest 2mJ/80W Pump energy/power
- High output stability CEP Stabilization options
- High Stability Architecture

frequency
spectroscopy
Raman
scattering
Higher
harmonics
Attosecond
Science

Transient absorption spectroscopy

Nonlinear optics

2D infrared spectroscopy

Fluorescence spectroscopy

AURORA Series

Self-developed fully automatic adjustable control system

OPA Performance

AURORA Performance

Optical parametric amplifier performance

Near-field & far-field spots

AURORA Performance

Optical parametric amplifier performance

OPA Output Power Stability 4.5 4 3.5 2.5 1.5 0 1 0.5 0 1 0.5 0 1 0.5 0 1 0.5 0 1 0.5 0 1 0.5 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Time (minutes)

210 μJ Pumped OPA + SHG Module Output Energy Curve

OPA output characteristics based on 515nm pumped laser

Scan the QR code to watch the OPA product video display

HYPERION series

—Pulse compression

- Up to 10x compression ratio
- **♦** Up to 2 mJ pump energy
- High output stability
- Periodic pulse options
- Integrated System Design

Ultrafast
spectroscopy
Higher
harmonics and
OPA
Attosecond

Multiphoton
imaging
Micro-nano
processing
Laser
lithography
Glass
processing

3.4 Product Introduction: Typical parameters of nonlinear pulse compressors

Input pulse VS output pulse

Input Spectrum VS
Output Spectrum

Input Power Stability VS Output Power Stability

3.4 Product introduction: Typical parameters of nonlinear pulse compressors

Scan the QR code to watch the MPC product video display

Market and business model

4.1 Applications

scientific research

industry

Industrial fine micromachining

- Flexible brittle material cutting
- Curved and profiled machining
- auto parts processing, etc

medical

- Eye surgery
- Cardiovascular and cerebrovascular stents
- Biological tissue resection
- medical imaging, etc

semiconductor

- Semiconductor measurement
- Laser cutting, dicing
- · Micro through-hole drilling
- laser debonding, annealing, etc

Aerospace

- Aero engine processing
- Precise guidance
- laser weapons, etc

Ultrafast optics

Material analysis

Medical Research

figTable: List of large scientific devices related to femtosecond laser

4.2 Corporate customers

Agency for Science, Technology and Research

SINGAPORE

4.3 Use Cases (NUS, NTU, IMRE) – Recently installed systems in Singapore

4.4 Use Case Highlights- Recently installed systems in Singapore

UV-NIR Tunable System

40 W fs laser + OPA 400 μ J @ 100 kHz, ~200 fs, **210–2600 nm** Ultrafast spectroscopy & imaging

• HELIOS-20W-HP @ NUS
20 W, 400 µJ @ 50 kHz, <250 fs
1035 nm, TEM00, water-cooled
Nano-fab, TGV, strong-field THz
Link

S <u>Link</u>

HELIOS-20W-HE Upgrade
 Up to 2 mJ (custom 3 mJ), 190 fs-10 ps
 Sub-30 fs with MPC (>90% efficiency)
 HHG, THz, material processing

• Customized Dual-OPA System
20 W / 400 μJ / <250 fs
Signal: 630–2600 nm, Idler: 3–10 μm
TA, SFG, THz, mid-IR pump–probe

Contact us Research and Business Development Team

founder, CEO

Ph.D., Institute of
Physics, Chinese
Academy of Sciences

Laser scientist at the University of Nebraska

Founder of Y-Laser & WaveQuanta

BEng, Biomedical Engineering, National University of Singapore

Research Engineer (NUS-IHT), Founder IM+(UAE)

MD Candidate-Doctor of Medicine

Manager, Singapore

www.yi-laser.com

Y- Laser Femtosecond Technology Co., Ltd

Vision:
Build an industry-wide ecosystem with femtosecond lasers as the core

Mission:
Be a leader in
femtosecond scientific
instruments and
femtosecond industrial

Values:
Continuous research and development, scientific thinking, integrity and transparency, customer

